Fuzzy local regression models with fuzzy clustering

نویسندگان

  • Antonio F. Gómez-Skarmeta
  • Humberto Martínez Barberá
  • Juan A. Botía Blaya
  • Miguel Delgado
چکیده

The TSK model introduced by Takagi Sugeno and Kang TSK fuzzy reasoning is associated with fuzzy rules that have a special format with a func tional type consequent instead of the fuzzy consequent that normally appears in the MamdamiModel In this way the TSK approach tries to decompose the input space into subspaces and then approximate the system in each subspace by a simple linear regression model This characteristic provides e cient models to deal with complex system although the generation of the corresponding fuzzy rules specially the premise struc ture is technically di cult and may lead to a nonlinear programming problem Several alternative approaches have been proposed to reduce the complexity of this building process In the area of fuzzy modeling the procedure of fuzzy clustering has been utilized in di erent ways In one of them fuzzy clusters give rise to local re gression models this is in fact the essence of the idea

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISTRIBUTED AND COLLABORATIVE FUZZY MODELING

In this study, we introduce and study a concept of distributed fuzzymodeling. Fuzzy modeling encountered so far is predominantly of a centralizednature by being focused on the use of a single data set. In contrast to this style ofmodeling, the proposed paradigm of distributed and collaborative modeling isconcerned with distributed models which are constructed in a highly collaborativefashion. I...

متن کامل

Neural Network Regressions with Fuzzy Clustering

A hybrid neural network regression models with unsupervised fuzzy clustering is proposed for clustering nonparametric regression models for datasets. In the new formulation, (i) the performance function of the neural network regression models is modified such that the fuzzy clustering weightings can be introduced in these network models; (ii) the errors of these network models are feed-backed i...

متن کامل

Local Models for the Analysis of Spatially Varying Relationships in a Lignite Deposit

Relationships between geographically referenced variables are usually spatially heterogeneous and, to account for such variations, local models are necessary. This paper compares the Geographically Weighted Regression (GWR) model, usually used to integrate and examine the spatial heterogeneity of a relationship, and the Fuzzy Clustering-Based Least Squares (FCBLS) model for the analysis of spat...

متن کامل

Local spatial regression models : a comparative analysis on soil contamination

Spatial data analysis focuses on both attribute and locational information. Local analyses deal with differences across space whereas global analyses deal with similarities across space. This paper addresses an experimental comparative study to analyse the spatial data by some weighted local regression models. Five local regression models have been developed and their estimation capacities have...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999